Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 11(8)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37630604

RESUMO

Microbial fuel cells (MFCs) offer sustainable solutions for various biotechnological applications and are a crucial area of research in biotechnology. MFCs can effectively treat various refuse, such as wastewater and biodiesel waste by decomposing organic matter and generating electricity. Certain Pseudomonas species possess extracellular electron transfer (EET) pathways, enabling them to transfer electrons from organic compounds to the MFC's anode. Moreover, Pseudomonas species can grow under low-oxygen conditions, which is advantageous considering that the electron transfer process in an MFC typically leads to reduced oxygen levels at the anode. This study focuses on evaluating MFCs inoculated with a new Pseudomonas species grown with 1 g.L-1 glycerol, a common byproduct of biodiesel production. Pseudomonas sp. BJa5 exhibited a maximum power density of 39 mW.m-2. Also, the observed voltammograms and genome analysis indicate the potential production of novel redox mediators by BJa5. Additionally, we investigated the bacterium's potential as a synthetic biology non-model chassis. Through testing various genetic parts, including constitutive promoters, replication origins and cargos using pSEVA vectors as a scaffold, we assessed the bacterium's suitability. Overall, our findings offer valuable insights into utilizing Pseudomonas spp. BJa5 as a novel chassis for MFCs. Synthetic biology approaches can further enhance the performance of this bacterium in MFCs, providing avenues for improvement.

2.
Environ Sci Pollut Res Int ; 28(19): 23595-23609, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32661961

RESUMO

Tetracycline hydrochloride (TCH) electro-oxidation by commercial DSA® and commercial DSA® modified by platinum electrodeposition was evaluated. The electrodeposition was carried out at constant potential (E = - 0.73 V vs RHE) in different times (1200, 2400, and 4800 s). Scanning electron microscopy (SEM) images show that Pt electrodeposits have elongated shape particle forming a uniform surface, and energy dispersive spectroscopy (EDS) data confirms the presence of Pt on the surface. The electrochemical characterization by cyclic voltammetry showed an increase of the electrochemically active area (EAA) in function of the Pt electrodeposition time. The electro-oxidation of the TCH 0.45 mmol L-1 in H2SO4 0.1 mol L-1 solution was evaluated according to the applied current densities (j = 25, 50, 100 mA cm-2). Both the amount of platinum deposited and j showed a slight improvement in the efficiency of TCH removal, reaching 97.2% of TCH removal to DSA®/Pt4800 and 100 mA cm-2. The TCH mineralization (TOC removal), the percentage of mineralization current efficiency (MCE%), and energy consumption were 15.8%, 0.2649%, and 7.4138 kWh (g TOC)-1, respectively. The DSA®/Pt electrodes showed higher stability to TCH electro-oxidation, indicating to be a promising material for the electro-oxidation of organic pollutants.


Assuntos
Platina , Poluentes Químicos da Água , Eletrodos , Oxirredução , Tetraciclina , Poluentes Químicos da Água/análise
3.
Bioresour Technol ; 277: 94-103, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30660066

RESUMO

This research work has succeeded in recovering energy from glucose by generating H2 with the aid of a Clostridium beijerinckii strain and obtaining electrical energy from compounds present in the H2 fermentation effluent in a microbial fuel cell (MFC) seeded with native port drainage sediment. In the fermentation step, 49.5% of the initial glucose concentration (56 mmol/L) was used to produce 104 mmol/L H2; 5, 33, 3, and 1 mmol/L acetate, butyrate, lactate, and ethanol also emerged, respectively. MFC tests by feeding the anodic compartment with acetate, butyrate, lactate (individually or as a mixture), or the H2 fermentation effluent provided power density values ranging between 0.6 and 1.2 W/m2. Acetate furnished the highest power density with a nanowire-rich biofilm despite the lowest anode bacterial concentration (1012 16S gene copies/g of sediment). Non-conventional exoelectrogenic microbial communities were observed in the acetate-fed MFC; e.g., Pseudomonadaceae (Pseudomonas) and Clostridia (Acidaminobacter, Fusibacter).


Assuntos
Fontes de Energia Bioelétrica/microbiologia , Clostridium/metabolismo , Fermentação , Hidrogênio/metabolismo , Pseudomonas/metabolismo , Drenagem , Eletricidade , Eletrodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...